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SUMMARY 

A semi-implicit finite difference method for the numerical solution of three-dimensional shallow water flows 
is presented and discussed. The governing equations are the primitive three-dimensional turbulent mean 
flow equations where the pressure distribution in the vertical has been assumed to be hydrostatic. In the 
method of solution a minimal degree of implicitness has been adopted in such a fashion that the resulting 
algorithm is stable and gives a maximal computational efficiency at a minimal computational cost. At each 
time step the numerical method requires the solution of one large linear system which can be formally 
decomposed into a set of small three-diagonal systems coupled with one five-diagonal system. All these 
linear systems are symmetric and positive definite. Thus the existence and uniqueness of the numerical 
solution are assured. When only one vertical layer is specified, this method reduces as a special case to 
a semi-implicit scheme for solving the corresponding two-dimensional shallow water equations. The 
resulting two- and three-dimensional algorithm has been shown to be fast, accurate and mass-conservative 
and can also be applied to simulate flooding and drying of tidal mud-flats in conjunction with three- 
dimensional flows. Furthermore, the resulting algorithm is fully vectorizable for an efficient implementation 
on modern vector computers. 
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1. INTRODUCTION 

Several numerical methods for the time-dependent two- and three-dimensional shallow water 
equations are known in the current literature and are now widely used in practical applications 
(see References 1-3 and the numerous references cited therein). The time integration schemes of 
these methods range from fully explicit to fully implicit. A fully explicit finite difference method is 
relatively simple to implement and easily vectorizable. However, a severe limitation exists for 
standard explicit numerical methods owing to the propagation of surface gravity waves. This 
restriction, known as the Courant-Friedrich-Lewy (CFL) stability criterion: usually requires 
a much smaller time step in the numerical integration than permitted by accuracy considerations. 
Several existing numerical models for two- and three-dimensional shallow water flow simulations 
are based on an alternating direction implicit (ADI) method. AD1 methods result in computa- 
tional efficiency superior to fully explicit methods because their improved stability allows larger 
time steps to be employed. However, a source of inaccuracy, known as the AD1 arises 
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when these methods are used with large time steps in flow domains characterized by complex 
geometries. The AD1 effect can be reduced by limiting the time step, but this also limits the 
efficiency of these methods. 

In recent years, more robust two-dimensional shallow water flow simulators which are 
economically competitive with AD1 methods have been developed and applied. These methods 
include semi-implicit’, as well as fully implicitgp lo  splitting methods. In semi-implicit methods 
only the barotropic pressure gradient in the momentum equations and the velocity divergence in 
the continuity equation are taken implicitly. Computationally, at each time step a linear 
five-diagonal system is solved in which the new water surface elevations for the entire domain are 
the unknowns. The matrix coefficient for such a system is symmetric and positive definite and its 
solution can be determined uniquely and efficiently by using a conjugate gradient method. l 1  The 
fully implicit time-splitting methods use two or more fractional time steps which essentially 
decouple the propagation operator from convection and diffusion. Each of these operators is then 
discretized implicitly. l o  

Several three-dimensional numerical models have been reported in the literature12 - l6 and 
applications of three-dimensional models for solutions of pract‘ical problems are becoming 
a reality with the aid of modern computers. For example, the model developed by Blumberg and 
Mellor”* l 8  has been used successfully by the authors and several other investigators in numerous 
practical applications and in studies of various important waterways (see e.g. References 19-23). 
The model is generally explicit with the exception that the vertical eddy viscosity terms are 
discretized implicitly. Since the model must simulate both the velocity field and the propagation 
of fast-moving gravity waves, a technique known as ‘mode ~ p l i t t i n g ’ ~ ~ , ~ ~  has been used just as in 
several other three-dimensional models. In the model formulation the governing system of 
equations is split into an external mode and an internal mode. A system of two-dimensional 
vertically integrated equations (external mode) is solved independently from the three-dimen- 
sional equations (internal mode). Using the external mode in two dimensions permits the efficient 
calculation of the free surface gravity wave propagation even if a small integration time step is 
required. The solution of the more computationally intensive three-dimensional internal mode 
equations can be achieved by using a large time step, because the integration is no longer limited 
by a stability associated with the gravity wave propagation. 

When mode splitting is used, care must be exercised to ensure the consistency of the physical 
quantities derived from the internal and external modes. Notably, the vertically integrated 
velocities in the external mode should be the same as the vertical integration of the velocity profile 
from the solution of the internal mode. Additionally, the representation of the bottom stress in the 
internal and external modes must also be consistent. Mathematically, if any of these inconsisten- 
cies exist, then the convergence of the numerical solution cannot be assured because the finite 
difference approximations for the respective modes are not consistent. 

Because of these potential difficulties, the numerical method presented in this paper does not 
incorporate mode splitting but instead solves directly the primitive three-dimensional governing 
equations. These equations are discretized and solved by a semi-implicit technique which 
accomplishes the necessary objective that the stability of the scheme does not depend upon the 
celerity. When the convective and viscous terms are discretized using a Eulerian-Lagrangian 
approach, the resulting algorithm is also shown to be stable under a mild stability condition. 
Thus the use of large time steps is permitted along with the benefit of improvements in both 
computational efficiency and accuracy. Computationally, fixed staggered finite difference meshes 
are used on horizontal planes and the dependent variables are defined in fixed vertical layers. At 
each time step, only the barotropic terms and the vertical viscosity terms are finite differenced 
implicitly in the horizontal momentum equations. Momentum exchanges between vertical layers 
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are expressed in a set of tridiagonal matrix equations relating the discrete horizontal velocities in 
each vertical level to the gradient of the water surface elevations (barotropic pressure gradient). 
A formal expression for the solution of these tridiagonal systems can be written in terms of the 
barotropic pressure gradient. Substituting the formal solutions into the vertically integrated 
continuity equation gives rise to a linear five-diagonal system whose only unknowns are the water 
surface elevation over the domain of interest. Such a system is symmetric and positive definite and 
can be solved uniquely and efficiently by using a conjugate gradient method. By direct substitu- 
tion of the barotropic pressure gradient known a t  the advanced time level, the horizontal velocity 
for each vertical layer can be computed. Finally, the vertical velocity component can be found by 
integration of the continuity equation. In the particular case where only one vertical layer is used 
to represent the three-dimensional system, the present formulation reduces naturally to the 
semi-implicit finite difference method of solution for the vertically averaged shallow water 
e q u a t i o n ~ . ~ ~ "  In the present numerical solution scheme most of the required arithmetic opera- 
tions can be made independent of each other and are thus highly vectorizable for efficient 
implementation on vector computers. 

This paper should be considered as phase one of the development of a general three-dimen- 
sional model (TRIM-3D). The main purpose of this paper is to establish a firm mathematical 
foundation for the numerical scheme and computational algorithm for the numerical solutions of 
two- and three-dimensional geophysical flow problems. To this end, only the special case of 
constant density flow is considered. Obviously, numerical investigations of three-dimensional 
flow problems are not complete unless proper representations of vertical turbulent mixing, 
transport of salt, variations in density distributions and coupling of salt transport through 
baroclinic forcing are addressed. These subjects will be the focus of phase two of the development 
of the TRIM-3D model. 

2. GOVERNING EQUATIONS 

The governing three-dimensional, primitive variable equations describing constant density, free 
surface flows in estuarine embayments and coastal oceans can be derived from the Navier-Stokes 
equations after turbulent averaging and under the simplifying assumption that the pressure is 
hydrostatic.2 Such equations have the form 

au au au au a Z u  a2u 
at ax ay aZ - + u - + v - + w - =  - 

au av aw -+- +-=0, ax ay aZ 
where u(x,  y, z, t ) ,  v(x,  y, z, t )  and w ( x ,  y, z, t )  are the velocity components in the horizontal x, y- 
and in the vertical z-direction respectively, t is the time, ~ ( x ,  y, t )  is the water surface elevation 
measured from the undisturbed water surface, g is the constant gravitational acceleration, f is the 
Coriolis parameter, assumed to be constant, and p and v are the coefficients of horizontal and 
vertical eddy viscosity respectively. In applications to large shallow embayments the ratio of 
vertical length scale to horizontal length scale is very small. As a consequence the horizontal eddy 
viscosity terms are typically orders of magnitude smaller than the vertical viscosity terms and 
their effect is normally small and obscured by numerical diffusion. Therefore most models either 
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neglect these terms or simply use a constant horizontal eddy viscosity coefficient. A more refined 
treatment of these terms is usually not justified. 

Integrating the continuity equation over the depth and using a kinematic condition at the free 
surface leads to the free surface equation 

where h ( x ,  y )  is the water depth measured from the undisturbed water surface. H ( x ,  y ,  t )  will be 
used to denote the total water depth, H(x, y, t )=h(x ,  y )+q(x ,  y ,  t) .  

The boundary conditions at the free surface are specified by the prescribed wind stresses T:  

and T ; :  

The boundary conditions at the bottom are given by expressing the bottom stress in terms of the 
velocity components taken from values of the layer adjacent to the sediment-water interface. The 
bottom stress can be related to the turbulent law of the wall, a drag coefficient associated with 
quadratic velocity or using a Manning-Chezy formula such as 

where Cz is the Chezy friction coefficient. 
In lieu of solutions of the complete three-dimensional governing equations, the flow and 

circulation in a class of well-mixed estuaries and coastal embayments can be satisfactorily 
represented by the solutions of a set of vertically averaged shallow water equations. The system of 
vertically averaged momentum equations can be derived by integrating vertically equations (1) 
from the sea bed z =  - h  to the free surface z=q. By using the free surface equation (2) and the 
boundary conditions (3) and (4), and after standard approximations on the non-linear convective 
terms, one gets the two-dimensional, vertically averaged shallow water equations26 

au au au gj(v2+v2)u+jv, 

Cz2 H -+u-+ v-= 
at ax ay 

where U=( l /H)SThudz  and V=(l/H)S'!,udz are the depth-averaged horizontal velocities. 
Equations ( 5 )  constitute a system of three partial differential equations with three unknown 

functions U ( x ,  y, t ) ,  V(x, y ,  t )  and q(x ,  y ,  t ) .  It will be shown that the three-dimensional numer- 
ical model, to be described next, reduces to a two-dimensional system in the shallow part of 
a three-dimensional domain. Moreover, the two-dimensional system is consistent with equations 
(5) and contributes to a major improvement in the computational efficiency of the three- 
dimensional model. 
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3. A THREE-DIMENSIONAL SEMI-IMPLICIT NUMERICAL METHOD 

A characteristic analysis of the two-dimensional, vertically integrated shallow water equations 
has shown that the celerity term J ( g H )  in the equation for the characteristic cone arises from the 
barotropic pressure gradient in the momentum equations and from the velocity derivatives in the 
free surface e q ~ a t i o n . ~  A rigorous stability analysis was also provided by using the von Neumann 
method on the corresponding linearized scheme. Results of this analysis have led to a practical 
semi-implicit method of solution for the two-dimensional shallow water equations which has 
proven to be very useful in several applications." On the basis of these previous studies a new, 
semi-implicit numerical method of solution for the three-dimensional free surface flow equations 
(1) will be derived in which the gradient of surface elevation in the momentum equations and the 
velocity in the free surface equation (2) will be discretized implicitly. The convective, Coriolis and 
horizontal viscosity terms in the momentum equations, however, will be discretized explicitly, but 
in order to eliminate a stability condition due to the vertical eddy viscosity, the vertical mixing 
terms will be discretized implicitly as well. 

As shown in Figure 1, a spatial mesh which consists of rectangular cells of length Ax, width A y  
and height Azk is introduced. Each cell is numbered at its centre with indices i , j  and k. The 
discrete u-velocity is then defined at half-integer i and integersj and k; u is defined at integers i and 
k and half-integer j ;  w is defined at integers i and j and half-integer k. Finally, r]  is defined at 
integers i and j. The water depth h ( x , y )  is specified at the u and u horizontal points. Then 
a general semi-implicit discretization of the momentum equations in (1) takes the form 

At n + l  n + l  
u1=ll/2, j ,  k = Fu;+ 112, j ,  k -9  - ( r ] i +  1, j ' r ]  i .  j Ax 

n + l  n +  1 n +  1 n + l  
i + 112, j ,  k + 1 - i + 112, j ,  k i + 112, j .  k - i + 112, j ,  k - 1 

v k +  112 - v k -  1 / 2  

1 (6)  
Azi+ 1/2, j ,  k +  112 A z i +  1 / 2 , j , k -  112 + At 

Azi + 112, j .  k 

1 / 2 , k +  112 
\ ' I  , -- 

Azi,j+ l i 2 . k  

where Azi+ 1 / 2 , j , k  and A q j +  1/2,k are in general the thickness of the kth water layer more simply 
denoted by Azk. If, however, a vertical face of the box is not fully filled (because either the bottom 
or the free surface crosses a vertical face of the kth box), then Azi+ 112, j , k  and/or Azi, j +  1j2,k are 
defined to be the wetted height of the corresponding face. If, in particular, both the bottom and 
the free surface cross the same vertical face of the kth box, then of course Azi+ 112, j , k  or Azis j +  1 /2 ,k  

will be equal to the total water depth H = h + r]  at that point. Finally, Azi+ 112, j , k  + 112 is defined to 
be the average of Azi+ 112, j , k  and hi+ 1/2, j , k +  1. Strictly speaking, since the thickness of the surface 
layer will depend on the position of the free surface and since the free surface changes with time, 
then the surface Az will also change with the time level n. For simplicity, however, we will omit the 
index n from the notation. In (6)  and (7) F is an explicit, non-linear finite difference operator which 
includes the explicit discretization of the substantial derivatives (convective terms) 
u, + uu, + uuy + wu, and u, + uu, + uuy + wu,, the horizontal eddy viscosity terms and the Coriolis 
terms. A particular form for F can be chosen in a variety of ways which will be discussed later. 
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Figure 1. Schematic diagram of computational mesh and notations 

Let m and M denote the k-index of the bottom and of the top finite difference stencil 
respectively. Since both m and M vary with the spatial position and since the value of M varies 
also with time, a precise index notation for m and M should be m i + l / 2 , j ,  m i . j + 1 / 2 ,  M 1 + 1 / 2 , j ,  

MY, j +  112. For notational simplicity, however, these indices will be omitted. Using this notation, 
the boundary conditions at the free surface and at the sediment-water interface, (3) and (4), are 
written in difference form as 

n +  1 Y,;? 1 /2, m - i, j + 112, m - 1 - J C ( u !, j + 1 12, m ) + ( u Y, j + 1 /2. m I + 1 
- Vi, j+ l /Z .m.  cz2 v m -  1 / 2  

A z i , j + l / 2 , m - 1 / 2  

In equations (8) and (9) the values of u and u at levels M + 1 and m- 1 are fictitious; they also 
appear in the finite difference equations (6) and (7) when k = M and m. By substituting the 
boundary conditions (8) and (9) in (6) and (7), the fictitious values will be replaced by values of 
u and u defined within the domain of interest. Equations (6) and (7) with the respective boundary 
conditions (8) and (9) can be written in the more compact matrix form 
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where U, V, AZ, G and A are defined as 

A =  

v M - 3 / 2 A t  - v M - 3 / 2 A t  + - v M  - l / Z A t  
A z M -  1 + 

AzM - 112 AzM - 112 AzM - 3/2 A z M  - 3/2 

0 

0 
- 

Equations (10) and (1 1) are linear tridiagonal systems which are coupled to the water surface 
elevation q"+ '  at time t n + l .  In order to determine q:,:', and for numerical stability, the new 
velocity field must satisfy for each i, j the finite difference analogue of the free surface equation (2), 

M 

zi + 112, j. k u i + 1/2,  j ,  k - c Azi - 1/2. j ,  k u i - 1/2. j. k 
k=m 

n + l  

or, in matrix notation, 

T U n + l  T u n + '  At 
vY,;' =v:, j - z [ ( A Z i +  112, j )  i +  1/2, j - ( A Z i -  112. j) i -  1/2. jI 

At 
-_ [ (AZi ,  j+l/2)TV~,:.:1/2-(AZi, j-1/2)TV:,;!1/21 (12) 

AY 

j , k ,  u i , j + l / Z , k  n +  1 and q:,:' over the entire computational mesh. This system has to 
For any structure given to F, equations (10)-(12) constitute a linear system of equations with 

unknowns 
be solved at each time step to determine recursively values of the field variables from given initial 
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data. For computational convenience this system will first be reduced to a smaller system in 
which qy,; are the only unknowns. Specifically, formal substitution of the expressions for 
U12:/2, and Vy,;; 112 from (10) and (1 1) into (12) yields 

A t 2  n + l -  n + l  - 7 { C(Az)TA - AZI 7, j +  1/2  (v!,): 1 - ~ 7 , :  
AY 

- C( A Z I T A -  AZI y, j- 1/2 ( V  i, j ~l i, j-  1 I} 

At  At  
=qy,j-- { [(AZ)TA-l GI:+ 112, j- [ (AZ)TA-  'GI:- 1/2, j} -- { [AZ)TA-l  GI:,,+ 112 

Ax AY 

- [ (AZ)TA-l  G1Y.j- 112). (13) 
Since A is positive definite, A - '  is also positive definite and therefore (AZ)TA-l A Z  is a non- 
negative number. Hence equations (13) constitute a linear five-diagonal system of equations for 
~ 7 , ;  ' which is symmetric and strictly diagonally dominant with positive elements on the main 
diagonal and negative ones elsewhere. Thus the system is positive definite and has a unique 
solution. In practice, this five-diagonal system can be solved very efficiently by a conjugate 
gradient method. Once the new free surface location has been determined, equations (10) and (1 1) 
are readily applicable to yield the new velocities u and u at time tn+ 1 .  

Finally, by discretizing the continuity equation in system (l), the vertical component of the 
velocity w at the new time level is 

n +  1 
n +  1 n +  1 A,Z !+ 112, j, k i + 112, j. k - AZy- 112. j. kuy:ll/2, j, k 

Ax w i .  j . k +  1/2 = wi. j , k -  1l2 - 

where the no-flux condition across the bottom boundary is assured by taking wy,& 1/2 = 0. 

4. FREE SURFACE CALCULATION BY CONJUGATE GRADIENT METHOD 

Since a substantial part of the computing time will be spent on solving the linear system of 
equations (13), the present section will be devoted to deriving a suitable form of the conjugate 
gradient method which is fast and requires a minimum amount of computer memory.27 First, 
equation (13) is rewritten in the more compact form 

d?  -s? n +  1 n +  1 n +  1 n + 1  - n 
r , j  r , j  i+ 1 / 2 , j q i +  l,j-~y-l/2,jqi-l,j-sy, j+ l /~qi . j+ l  -s?,j-1/2~i,j-l -qi,j, (15) 

where 

A t 2  A t 2  
s?i1/2,j=g 7 C(Az)TA-1AZIlitl/2,j, s!,j+1/2=9 7 [(AZ)TA-1AZIy,j*1/2, 

Ax AY 
d? 1.1 .= 1 +sl+ 1/2,j+sl- 1/2,j+s?,j+ 112 +sy,j- 1/29 

q:, j=qy, j--{[AZ)TA-lG]y+ 1/2 ,  j-[(AZ)TA-lG]y- 112, j} 
At 
Ax 

At 
AY 

-- {[(AZ)TA-lG]tj+ 1/2 - [(AZ)T A-'G]y, j- 1/2}. 
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Equation (15) can also be written in the normalized form 

which, by changing the variable J(d7,  j )qy , ;  to ei, j ,  is equivalent to 

(17) e . . -a .  I +  1 / 2 ,  j e i +  1, j - a i -  112. j e i -  1 .  j - a i ,  j +  1 / 2  e i ,  j +  1 - a i ,  j -  1 / 2 e i ,  j -  1 = b i ,  j y  

where 

Note that for notational simplicity the superscript n has been omitted; however, in equation (17) 
the coefficients aii  1 / 2 ,  j ,  ai, j +  1 / 2  and bi, and the unknowns ei, depend on the time step. Note also 
that the coefficients ai+ l j 2 ,  and ai, j +  l i 2  in (17) are non-negative and their sum is strictly less than 
unity. Thus the system formed by these equations is normalized, symmetric and positive definite. 

The conjugate gradient algorithm to solve the system of equations (1 7) takes the following 
steps. 

(c) Then for k =0, 1, 2, . . . and until (r(k) ,  r(k))<E, calculate 

In equation (19) each element of the vector Mp is simply given by 

(21) ( M p ' k ' ) .  . = p ! k ! - a .  ( k )  ( k )  ( k )  ( k )  
1.1 1 . 1  I +  1 / 2 , j P i +  1 , j - a i -  1 / 2 , j P i - 1 , j - % j +  1 / 2 P i . j +  1 - @ i , j - 1 / 2 P i , j - l .  

Thus at each iteration the essential calculations consist of a matrix-vector multiplication Mp as 
specified in equation (21), two scalar products between vectors, namely (r, r) and (p, Mp), and 
three sums between vectors, namely e - ap, r - aMp and r + Pp. Obviously, all these operations 
are relatively simple and fully vectorizable. 

5. FLOODING AND DRYING OF COMPUTATIONAL CELLS 

Once the free surface (and hence the new water velocity) has been computed throughout the 
computational domain, before proceeding to the next time step, some of the vertical grid spacings 
Azi + l , 2 , j , k  and A Z ~ , ~ +  1 / 2 , k  have to be updated to account for the new free surface location. The 
new total depth H71;/2,j and Hr*f:1,2 at the u and u horizontal locations have to be updated. 
Thus, since the bathymetry hi+ 1/2, and hi, j +  1 / 2  is specified at  the u and u horizontal points and 
since a negative value for the total depth H is physically meaningless, the discrete total depths 
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HY::/2, and HY,f! 112 are defined as 

(22) 

(23) 

n +  1 

n + l  

HY:l/z, j =max(O, hi + l /z .  j + vY,;  ' , hi + 1/2, j + v i + 1, j), 

HY,;!1p=max(O, hi,j+l/z+VY,;'? hi,j+l/~+Vi,j+l). 

A resulting zero value of the total depth H = h ( x ,  y )  + v (x, y ,  t )  simply means a dry point which 
may be flooded when the total water depth H becomes positive. If the total depth is positive, then 
the side is a wet side and along that side some of the vertical increments Az will be non-zero. If the 
total water depth is zero, then all the vertical increments Az will be zero at the corresponding side. 
Thus the regions representing low land can be initialized by a small negative value of h and the 
regions of permanent dry land can be initialized by a large negative value of h, so that the total 
depth will never become positive even at high tides. Moreover, when H is zero, the respective 
friction factor will be assumed to be infinity and, accordingly, the corresponding velocity u or 
u across the side of the cell is forced to vanish. It is important to point out that the resulting finite 
difference equation for the water surface elevation, equation (12), correctly accounts for positive 
and zero values of the total depth on each side of a computational stencil. The treatment of 
flooding and drying is borne out naturally without special treatment and guarantees mass 
conservation while accounting for the flooding and drying of tidal mud-flats. The occurrence of 
a zero value for the total depth H on one side of a cell implies zero velocity or zero mass flux until, 
at a later time, H becomes positive. Of course, a cell is considered a dry cell only if the total water 
depths at all sides are zero. Accordingly, in a dry cell equation (12) is reduced to V Y , ;  ' = ~ 7 ,  j ,  i.e. 
there is no variation of the water surface elevation in a dry cell. The q-value for a dry cell will be 
solved in the general procedure; an artificial q-value for a land point is never required by equation 
(12). Similarly, on a dry side of a cell equations (10) or ( 1 1 )  will be replaced by UY++i/2,j=0 or 
V;,:: = O .  Hence, when the flooding and drying of cells takes place, the application of the 
present algorithm in those cells produces the same finite difference equations, equation (12). This 
simplifies the computer algorithm in that equation (12) can be applied to all points throughout 
the domain, resulting in an algorithm that can be vectorized for efficient computations. The 
presence of islands and other permanently dry areas as well as tidal flats will be accounted for 
appropriately and automatically. The boundary shorelines, which are varying with time, are 
defined by the condition of no mass flux. This condition is automatically satisfied as discussed 
above without any special treatment. 

6. EULERIAN-LAGRANGIAN DISCRETIZATION OF CONVECTIVE AND 
VISCOUS TERMS 

One of the major difficulties in the numerical treatment of the shallow water equations arises from 
the discretization of the convective and viscous terms. Consider then the following convec- 
tion-diffusion equation in three space dimensions: 

ac ac ac ac a Z c  a Z c  
- + u - + u - + w - =  -+% +- y -  , 
at ax ay  aZ p (  ax2 ay  ) :z( ::) 

where p and v are non-negative diffusion coefficients and, for the time being, the convective 
velocities u, u and w are assumed to be constants. 

Equation (24) can be solved numerically in a variety of ways. A convenient semi-implicit finite 
difference method, whose stability does not depend upon the vertical eddy diffusivity, is obtained 
by discretizing the convective terms by explicit upwind finite differences, the horizontal eddy 
diffusivity by explicit central differences and the vertical eddy diffusivity term by an implicit finite 
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difference. For non-negative u, u and w the resulting finite difference equation is 

For every i and j this method requires the solution of a symmetric, positive definite, tridiagonal 
system. The necessary and sufficient stability condition of scheme (25) is 

- + - + - + 2 ~  IUI I U I  I 4  
Ax Ay Az 

In convection-dominated problems the stability condition (26) is not very restrictive. This 
method, however, is only first-order-accurate in space and the truncation error is in the form of 
a diffusion term. This artificial viscosity is directionally dependent. Hence, in convection- 
dominated problems, not only the artificial viscosity will prevail over the physical viscosity, but 
drastically different numerical predictions can be obtained simply as a result of different spatial 
orientations of the computational grid.28,29 

In order to improve the stability and accuracy of an explicit finite difference method, consider 
again equation (24) in the Lagrangian form 

where the substantial derivative dldt indicates that the time rate of change is calculated along the 
streak line defined by 

A natural semi-implicit discretization of equation (27) is simply given by 
n + l  n + l  ci. j. k -ci, j .  k - 1 

Azi,j,k- 112 
n +  1 vk + 1/2 - v k - l / 2  

ci. j ,  k - c y - a .  j- b,  k - d  - Azi,j,k+1/2 

(29) 
where a = uAt/Ax, b = u AtlAy and d = wAt1A.z are the grid Courant numbers. 

It is important to interpret the physical significance of (29). The values of c at and around 
( i ,  j ,  k )  at time t ,+ are related to the c-values at and around ( i -a ,  j -  b, k - d )  at time t , .  
Moreover, ( i  - a, j - b, k - d )  denotes a point on the same streak line which passes through (i, j ,  k) 
at time c , , + ~ .  Thus (29) is not only a simple algorithm but also accounts correctly for both 
convection and diffusion. In general, however, a, b and d are not integers; therefore 
( i -a,  j - 6 ,  k - d )  is not a grid point and an interpolation formula must be used to define 
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c Y - ~ ,  j - b , k  - d .  The accuracy, stability, numerical diffusion and spurious oscillations of (29) depend 
on the interpolation formula chosen. The simplest interpolation that can be taken for calculating 
c : - ~ .  j - b ,  k - d  is the trilinear interpolation over the eight surrounding mesh points. For positive a, 6 
and d,  let I ,  rn and n be the integer parts of a, b and d respectively and p ,  q and r be their 
corresponding decimal parts, so that a = I + p ,  b = m + q and d = n + r. Then c y - a ,  j - 6 , k - d  is approx- 
imated by 

c ; - a , j - b , k - d = ( l  - r ) ( ( l  - q ) C 1 - I , j - m , k - n + q C 1 - I , j - m -  l , k - n ]  

+ p [ (1 -q)cy- I - 1 ,  j -  m. k - n  + qcy- I - 1 ,  j - m - 1 ,  k - n ]  > 
+ r { ( 1  [(l- qlcy- I ,  j -m, k - n - 1 + qc?- I ,  j -  m - 1 ,  k - n  - 1 1 
+p[(1 -q )cy - I -  1 , j - m , k - n -  1 + q C ! - I -  1 ,  j - m -  1 . k - n -  1 1 } .  (30) 

It can be shown2' that when a bilinear interpolation (30) is used, the Eulerian-Lagrangian 
scheme (29) is free from spurious oscillations. Moreover, the artificial diffusion, which can be 
regarded as the interpolation error, is reduced when compared with the artificial diffusion 
induced by the upwind method. Further reduction can be obtained by increasing a, b and d ,  i.e. by 
reducing Ax, A y  and Az. Complete elimination of the numerical diffusion can be achieved by 
using a higher-order interpolation formula, but the resulting method may introduce some 
spurious oscillations. Applications of this scheme to problems with large vertical diffusion v or 
small vertical spacings Az have suggested the use of an implicit discretization only for the vertical 
diffusion term. Indeed, it can be shown3' that the stability condition for the scheme (29) is simply 
given by 

A t < [  2P(  &+&)I - 1  ' 

which is much less restrictive than (26). Clearly, when p = 0, this scheme becomes unconditionally 
stable. 

The Eulerian-Lagrangian method described above is also applicable to the case when equation 
(24) is non-linear. In this case the determination of Q, b and d requires the integration of equations 
(28), in which the right-hand sides are known only at time level t , .  Therefore u, u and w are 
assumed to be invariant over a time step and equations (28)  will be integrated numerically 
backwards from time level t ,+ to t ,  by using, for instance, the Euler method.' The streak lines, 
which in general are not straight lines, are better approximated. This integration process is 
relatively fast, especially if performed on a vector machine. 

Use of the Eulerian-Lagrangian method to discretize the convective and viscous terms in the 
momentum equations of system (1) now appears to be quite straightforward. Specifically, the 
finite difference operator F in (6)  and (7) can be defined as 

n +  1 Fui + 112, j ,  k = uy+ 112 - a ,  j -  b ,  k - d 

uy+ 112 - a  + 1 ,  j - b ,  k - d - 2 u y +  1 / 2  - a ,  j -  b ,  k - d  + u?+ 112 - a  - 1 ,  j - b ,  k - d  

+ P A t  ( Ax 

+ u?+ 112 - a ,  j - b +  l , k - d - 2 U y +  112 - a ,  j - b , k - d  + u y +  112 - a ,  j - b -  1 ,  k - d  

AY 

+f At u y +  1 / 2  - a ,  j - b , k - d ?  
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n +  1 Fui. j + 112, k = UY-a, j +  112 - b,  k - d  

VY-0  + 1, j +  112 - b ,  k - d  - 2UY-as  j + 112 - b ,  k - d + VY-a - 1 ,  j +  112 - b ,  k - d  

+PAt ( Ax 

-f At U7-a .  j +  112 - b. k - d .  

(33) 

The inequality (31) then constitutes the stability condition for the semi-implicit flow algorithm. 

7. A PARTICULAR CASE: THE TWO-DIMENSIONAL MODEL 

Interestingly enough, if the vertical spacing Az is taken to be large enough so that both the 
bottom and the free surface fall within one vertical layer, then this algorithm reduces to 
a two-dimensional semi-implicit numerical method as described by C a ~ u l l i . ~  In this case the third 
index can be omitted from the notation and AZi+ 112, and AZi,  j +  112 reduce to HY+ 112,  and 
H;, j +  112, respectively. Since rn = M = 1, by substituting the boundary conditions (8) and (9) in 
equations (6) and (7), the following two-dimensional discretized momentum equations result: 

where F is again an explicit, non-linear finite difference operator corresponding to the spatial 
discretization of the convective terms, the horizontal eddy viscosity terms and the Coriolis terms. 
Again, equations (34) and (35) can be written in the form (10) and (1 l), where the matrix A and the 
vectors G and AZ now contain only one element. Specifically, 
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Thus the finite difference free surface equation (12) in this case then reduces to 

Equations (34)-(36) can also be regarded as obtained directly from a semi-implicit discretization 
of two-dimensional shallow water equations (5).  Formal substitution of the expressions for 
U ; z : / 2 , j  and V:,f:1/2 from (34) and (35) into (36) yields again an equation of the form (13). Thus 
the corresponding linear system is symmetric and positive definite. In practice, this five-diagonal 
system can be solved very efficiently by a conjugate gradient method as described above. 
Inequality (31) can be shown to be the stability condition which applies when a Euler- 
ian-Lagrangian discretization is used to discretize the convective terms. ' -  ' The corresponding 
tidal, residual, inter-tidal mud-flat (TRIM) algorithm has been presented and applied to several 
estuaries and tidal embayments.' l V 3 l  

The fact that a consistent two-dimensional shallow water model can be derived from the 
three-dimensional model as a particular case is a very important feature of this formulation. This 
property of the algorithm leads to a computer code that can be used for both three-dimensional 
problems as well as two-dimensional problems as a particular case. More importantly, when the 
three-dimensional model is applied to a typical coastal plain tidal embayment characterized by 
deep channels connected to large and flat shallow areas, a great saving in computing time is 
achieved because the deep channels are correctly represented in three dimensions while the flat 
shallow areas are represented only in two dimensions without any special treatment. Since the 
shallow areas of tidal embayments are almost always well mixed, a two-dimensional representa- 
tion is appropriate. 

8. APPLICATIONS 

In the following, two distinctly different tidal flow simulations are reported to demonstrate 
properties of this model. Application of the model in San Francisco Bay, California is to show the 
robustness of the model. The second example is the extremely complex flows in the Lagoon of 
Venice, Italy. The model results reported here are mainly given in support of the mathematical 
claims for the present model. Detailed model calibration and verification for each of these studies 
will be reported separately. 

8.1. San Francisco Bay, California 

San Francisco Bay is a complex estuary consisting of interconnected embayments, sloughs, 
marshes and channels (Plate 1). Among the many factors that affect the flow properties in the Bay, 
the water depth distribution is one of the most important factors controlling the spatial 
variability of both the magnitude and direction of the tidal The tides entering the 
Bay through a narrow opening at the Golden Gate have a range of roughly 2 m composed 
primarily of the M2 and K1 tides. Within Central Bay the tides bifurcate and propagate 
concurrently into South Bay and the northern reach, which includes San Pablo Bay, Carquinez 
Strait and Suisun Bay. Central Bay is not only geometrically complex, but the variations in depth 
are quite large. The deepest region in Central Bay is located near the Golden Gate, where a depth 
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Plate 2. Vertical distribution of tidal current at C1 (a) for typical flooding and (b) for typical ebbing. Shown 
in the bottom panel is the projection of all velocity vectors indicating phase or direction differences 
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close to 100 m is found. At the eastern boundary of Central Bay is a broad region of inter-tidal 
mud-flats. The geometry of Central Bay is further complicated by the presence of several islands. 

Both San Pablo Bay and South Bay are characterized by a deep channel surrounded by broad 
shoals. The tidal current distribution in these basins is less complex. High-intensity tidal currents 
are distributed within the deep channels, while lower-magnitude tidal velocities are observed over 
the shoal regions owing to increased friction. The spatial variability of velocity gradients over the 
shoals and within the deep channels are not particularly large. However, in the transition zone 
between the channel and the shoal the velocity gradients can be quite large. Carquinez Strait is 
a deep channel with a relatively simple geometry which connects San Pablo Bay to its west and 
Suisun Bay to its east. Suisun Bay is a shallow and complex basin consisting of several 
interconnected channels and shoals. For a discussion of the tides and tidal circulation in San 
Francisco Bay see Reference 33. 

The three-dimensional tidal circulation in San Francisco Bay is simulated using the present 
model with a horizontal finite difference mesh of Ax = Ay = 500 m. At open boundaries, 16 tidal 
harmonic constituents are used to reproduce the tides as boundary conditions. Different numbers 
of vertical layers and variable layer depths have been tested. The numerical solutions have been 
achieved using an integration time step At = 15 min. In this application the maximum grid 
Courant number based on celerity exceeds 50, with the average grid Courant number being about 
20. For a simulation of 6 days (144 h) the model with one vertical layer (i.e. the depth-averaged 
two-dimensional model) requires 47 CPU seconds on the Cray Y-MP8/432. Using the same 
horizontal discretization and integration time step, the three-dimensional model with two vertical 
layers requires 59 CPU seconds and with 12 vertical layers requires only 120 CPU seconds to 
complete the simulation. The computations have exceeded 117 Mflops (million floating point 
operations per second) on the Cray Y-MP supercomputer, which is an indication that the model 
code is highly vectorized. Separations between consecutive vertical layers in the 12-layer model 
are set at 1, 3, 6, 10, 15, 21, 28, 36, 45, 55 and 70 m below mean sea level. The vicinity of the 
maximum water depth of 98 m, just east of the Golden Gate, is the only area where all 12 layers 
are needed. The typical water depth and tidal current distributions in the top layer about 1 h after 
the beginning of flood at the Golden Gate are depicted in Plate l(a). Similarly, the water depth 
and tidal current distributions 1 h after the beginning of ebb at the Golden Gate are depicted in 
Plate 1 (b). Some shallow regions, i.e. South Bay, San Pablo Bay and Suisun Bay, are emerged at 
low water (Plate l(a)) but submerged at high tide (Plate l(b)). 

The three-dimensional velocity structures recorded at C1 station near the entrance to the Bay 
(Plate 1) are shown in Plates 2(a) and 2(b), representing typical flooding and ebbing. The velocity 
vectors are not in a vertical plane. A projection of the velocity vectors onto the bottom panel is 
also shown in Plates 2(a) and 2(b). By examining a series of similar plots, the time evolution of 
flooding and ebbing cycles can be studied. These results show a noticeable phase lag in the 
velocity distribution in the vertical. Generally the velocity shear in the surface layers in weaker 
than the shear in the bottom layers. Some variations in the velocity shear in the vertical are 
caused by local basin topography. To exhibit the time variation of tidal velocities of a three- 
dimensional flow field, a stick diagram is used to depict the tidal velocity time series for each 
vertical layer. At this station, because the velocity vector are mostly east-west, the stick diagrams 
depict velocity vectors with a 45" counterclockwise rotation. Shown in Figures 2(a) and 2(b) are 
the stick diagrams of tidal currents at C1 for the top three layers and the bottom thfee layers 
respectively. Near the surface the velocity shear is weak and the variations between the vertical 
layers are generally small. Conversely, the velocity shear is considerably larger as evidenced by 
large variations in the velocity profile in the vertical. The tidal currents in the surface layers rotate 
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clockwise in tidal cycles, while the bottom currents incline more towards bidirectional oscil- 
lations. Detailed model calibration and verification will be reported separately. 

8.2. Lagoon of Venice, Italy 

One of the most challenging embayments modelled with the present algorithm has been the 
Lagoon of Venice, Italy. The Lagoon of Venice is a very complex system whose area is about 50 
km2, consisting of several interconnected narrow channels, with a maximum width of 1 km and 
up to 50 m deep, encircling large and flat shallow areas. The Lagoon is connected to the Adriatic 
Sea through three narrow inlets, namely Lido, Malamocco and Chioggia. The city of Venice is 
located in the Lagoon near the Lido inlet and is threatened by at least two problems related to 
water circulation. During stormy seasons, storm surge of tides may inundate the ground floors of 
many buildings, and normally the water circulation in the Lagoon of Venice is clearly insufficient 
to maintain an acceptable level of water quality. The Lagoon is contaminated by the waste from 
the inadequate sewage system of Venice and from heavy industrial pollution sources. An accurate 
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Figure 2. Stick diagrams for tidal current in vertical layers. The velocities are plotted with a 45" counterclockwise 
rotation. (a) Stick diagrams for tidal currents in top three layers. (b) Stick diagrams for bottom three layers. The mean 
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Figure 2. (Continued) 

numerical model is then needed to forecast the hydrodynamic and water quality effect of any new 
development in the Lagoon. For this purpose a pioneer numerical study was published by Volpi 
and S g ~ a z z a r o . ~ ~  A two-dimensional finite element model has recently been presented by 
Umgiesser et aL3’ Considerable portions of the Lagoon of Venice consist of areas which at low 
tides are emerged and at high tides are flooded (Plate 3). Therefore the capability of the present 
model to properly treat the flooding and drying of tidal flats becomes an essential issue. The tidal 
amplitudes in the Adriatic Sea are about 0.5 m. Tides propagate from the Adriatic Sea into the 
Lagoon of Venice through the three inlets. The Lagoon has been covered with a 384 x 426 finite 
difference mesh of equal Ax = Ay = 100 m. This fine computational mesh allows for an accurate 
description of the tree-like structure of the main channels. At the three inlets an M, tide of 0.5 m 
amplitude and 12 lunar hour period has been specified. The integration time step is chosen to be 
At = 15 min and the computations have been carried out by solving at each time step a corres- 
ponding linear, five-diagonal system of 163 584 equations. Using only one vertical layer (i.e. the 
two-dimensional model), the time required to simulate a tide of 12 h period is 62 CPU seconds on 
the Cray Y-MP8/432. Using the same horizontal discretization, the three-dimensional model 
with two vertical layers requires 83 CPU seconds. The three-dimensional model with 10 vertical 
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layers requires only 134 CPU seconds on the Cray Y-MP8/432. Plates 3(a) and 3(b) show the 
typical water surface elevations computed at low and high tide respectively. Plate 4(a) shows 
a typical situation for inflow from the Lido inlet and around Venice in three consecutive layers 
from the top. Plate 4(b) shows a typical situation for outflow in the same region. The computed 
results clearly indicate how the currents follow the waterway of the deep channels and the ability 
of the present model to reproduce flooding and emergence of large areas in the Lagoon of Venice. 

9. CONCLUSIONS 

A semi-implicit finite-difference method for solving the two- and three-dimensional shallow water 
equations has been presented. The combination of judicious selection of terms that are finite 
differenced implicitly and use of a Eulerian-Lagrangian method for treating the convective terms 
makes this formulation fast, accurate and stable. A conservative form of the continuity equation is 
used; the resulting finite difference method is locally and globally mass-conserving. The mass 
conservation properties have led to an extremely simple and general algorithm for treating 
watering and dewatering of computational stencils. This solution scheme solves a set of tridiag- 
onal systems along the vertical layers and one five-diagonal linear system defined throughout the 
horizontal flow field. All these systems are symmetric and positive definite. These matrix 
properties assure the existence and uniqueness of the numerical solution. Computationally, each 
tridiagonal system is solved by a direct method, while the numerical solution of the large 
five-diagonal system can be conveniently obtained by a conjugate gradient method. Furthermore, 
the structure of the solution algorithm leads to a computer code which is completely vectorizable. 
The overall accuracy of the numerical scheme is first-order in both space and time. A slight 
amount of numerical artificial viscosity is introduced which can be brought under control by 
reducing the spatial grid size. 

To test the present algorithm, two applications representing a broad range of tidal character- 
istics have been presented and discussed. These applications, San Francisco Bay, California and 
the Lagoon of Venice, Italy, are unique in their own rights. The high computational efficiency of 
this method has made it possible to provide fine details of the circulation structures for San 
Francisco Bay and the Lagoon of Venice that previous studies were unable to obtain. San 
Francisco Bay and the Lagoon of Venice are also unique ecosystems which have received much 
research attention. This three-dimensional semi-implicit model will be used as one of the elements 
in interdisciplinary ecological investigations, providing the basic hydrodynamic information 
which is the backbone of transport processes on a tidal time scale. These studies are continuing; 
detailed calibrations and verifications will be reported separately. The computer code for this 
algorithm is fully vectorized and has been implemented on a variety of computers. Its superior 
computational efficiency has made it possible to simulate sufficiently fine details of the tidal 
circulation in embayments for time periods spanning the spring-neap tidal cycle or longer 
without breaking the computer budget of a research project. 
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